42 research outputs found

    Spin-1 fields and RG flows in 4 dimensions

    Get PDF

    The model dependence of mϱ/fπ

    Get PDF

    Effect of stout smearing on the phase diagram from multiparameter reweighting in lattice QCD

    Get PDF
    The phase diagram and the location of the critical endpoint (CEP) of lattice QCD with unimproved staggered fermions on a Nt=4 lattice was determined fifteen years ago with the multiparameter reweighting method by studying Fisher zeros. We first reproduce the old result with an exact algorithm (not known at the time) and with statistics larger by an order of magnitude. As an extension of the old analysis we introduce stout smearing in the fermion action in order to reduce the finite lattice spacing effects. First we show that increasing the smearing parameter ρ the crossover at μ=0 gets weaker, i.e., the leading Fisher zero gets farther away from the real axis. Furthermore as the chemical potential is increased the overlap problem gets severe sooner than in the unimproved case, therefore shrinking the range of applicability of the method. Nevertheless certain qualitative features remain, even after introducing the smearing. Namely, at small chemical potentials the Fisher zeros first get farther away from the real axis and later at around aμ_q=0.1–0.15 they start to get closer, i.e., the crossover first gets weaker and later stronger as a function of μ. However, because of the more severe overlap problem the CEP is out of reach with the smeared action

    New approach to lattice QCD at finite density; results for the critical end point on coarse lattices

    Get PDF
    All approaches currently used to study finite baryon density lattice QCD suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We formulate and test an algorithm, sign reweighting, that works directly at finite μ = μ_{B}B/3 and is yet free from any such uncontrolled systematics. With this algorithm the only problem is the sign problem itself. This approach involves the generation of configurations with the positive fermionic weight |Re det D(μ)| where D(μ) is the Dirac matrix and the signs sign(Re det D(μ)) = ±1 are handled by a discrete reweighting. Hence there are only two sectors, +1 and −1 and as long as the average 〈±1〉 ≠ 0 (with respect to the positive weight) this discrete reweighting by the signs carries no overlap problem and the results are reliable. The approach is tested on N_{t}​ = 4 lattices with 2 + 1 flavors and physical quark masses using the unimproved staggered discretization. By measuring the Fisher (sometimes also called Lee-Yang) zeros in the bare coupling on spatial lattices L/a = 8, 10, 12 we conclude that the cross-over present at μ = 0 becomes stronger at μ > 0 and is consistent with a true phase transition at around μ_{B}​ /T ∼ 2.4

    Baryon spectrum in the composite sextet model

    Get PDF
    The strongly coupled near-conformal gauge theory with two fermion flavors in the two-index symmetric (sextet) representation of SU(3) is potentially a minimal realization of the composite Higgs mechanism. We discuss the staggered fermion construction of baryonic states, present our first numerical results and comment on implications for dark matter

    Toward the minimal realization of a light composite Higgs

    Get PDF
    Work in progress is reported on a particularly interesting gauge theory with a fermion doublet in the two-index symmetric (sextet) representation of the SU(3) color gauge group. Extending previous studies we outline our strategy as we investigate Goldstone dynamics and Electroweak scale setting from chiral symmetry breaking (χSB), test the GMOR relation from the spectrum of the Dirac operator and the related chiral condensate, begin to develop and test mixed action based improved analysis of χSB with new run plans at fixed topology to cross over from the p-regime to the epsilon-regime of χSB, continue to pursue the light 0++ scalar and its relation to the dilaton, and probe the scale-dependent running coupling from the perturbative UV scale to the scale of chiral symmetry breaking. Our observations suggest that the model is very close to the conformal window and a light composite scalar, perhaps the Higgs impostor with or without dilaton-like interpretation, appears to emerge with 0++ quantum numbers. The lightest baryon of the model on the 3 TeV scale has intriguing implications

    Spectral functions of charmonium with 2+1 flavours of dynamical quarks

    Get PDF
    Finite temperature charmonium spectral functions in the pseudoscalar(PS) and vector(V) channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057fm), with a non-physical pion mass of 545MeV. The highest temperature studied is approximately 1.4Tc. Up to this temperature no significant variation of the spectral function is seen in the PS channel. The V channel shows some temperature dependence, which seems to be consistent with a temperature dependent low frequency peak related to heavy quark transport, plus a temperature independent term at omega > 0. These results are in accord with previous calculations using the quenched approximation.Comment: Conference proceedings: The 32nd International Symposium on Lattice Field Theory - Lattice 2014 June 23-28, 2014 Columbia University, New York, New York This conference contribution draws heavily from the paper: arXiv:1401.5940 [hep-lat

    New approach to lattice QCD at finite density: reweighting without an overlap problem

    Get PDF
    Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We test a method - sign reweighting - that works directly at finite chemical potential and is yet free from any such uncontrolled systematics: with this approach the only problem is the sign problem itself. In practice the approach involves the generation of configurations with the positive fermionic weights given by the absolute value of the real part of the quark determinant, and a reweighting by a sign. There are only two sectors, +1 and -1 and as long as the average h±i ≠ 0 (with respect to the positive weight) this discrete reweighting has no overlap problem - unlike reweighting from μ = 0 - and the results are reliable. We also present results based on this algorithm on the phase diagram of lattice QCD with two different actions: as a first test, we apply the method to calculate the position of the critical endpoint with unimproved staggered fermions at Nτ = 4; as a second application, we study the phase diagram with 2stout improved staggered fermions at Nτ = 6. This second one is already a reasonably fine lattice - relevant for phenomenology. We demonstrate that the method penetrates the region of the phase diagram where the Taylor and imaginary chemical potential methods lose predictive power

    QCD thermodynamics with continuum extrapolated Wilson fermions II

    Get PDF
    We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a decrease in the light chiral pseudo-critical temperature as the pion mass is lowered while the pseudo-critical temperature associated with the strange quark number susceptibility or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum results obtained in the staggered formulation
    corecore